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Abstract. Based on the rigorous formulation of integral equations for the propagations of light waves at the
medium interface, we carry out the numerical solutions of the random light field scattered from self-affine
fractal surface samples. The light intensities produced by the same surface samples are also calculated in
Kirchhoff’s approximation, and their comparisons with the corresponding rigorous results show directly
the degree of the accuracy of the approximation. It is indicated that Kirchhoff’s approximation is of
good accuracy for random surfaces with small roughness value w and large roughness exponent α. For
random surfaces with larger w and smaller α, the approximation results in considerable errors, and detailed
calculations show that the inaccuracy comes from the simplification that the transmitted light field is
proportional to the incident field and from the neglect of light field derivative at the interface.

PACS. 42.25.Fx Diffraction and scattering – 42.30.Ms Speckle and moire patterns

1 Introduction

In the area of the diffraction and propagation of light
waves, the Kirchhoff approximation (KA) is one of the
most important theoretical methods and it predominates
treatment of the problems pertinent to wave propagations
due to its simplicity and convenience [1,2]. One category of
these problems is the diffraction of light waves from regu-
lar and random medium interfaces. For regular interface,
the diffracted field is also regular and then is compara-
tively simple, and the accuracy of KA has been widely
proven in various optical systems, one example of which
is the great success in designing the optical micro-device
with a given intensity distribution by use of the inverse
algorithm based on KA [3,4]. While the light waves are
scattered from random surfaces, the intensity distributions
are rather complicated and the speckles with granular ap-
pearances are usually formed [5–8]. Despite the overall
applications of KA, the terms neglected or simplified such
as the height derivatives of the random surface and the
derivatives of the light field at the interfaces may have
significant influences on the scattered light fields in the
observation planes, and the accuracy of the approxima-
tion is not well understood. One of the difficulties therein
is to relate practically a complicated speckle field to the
surface profile producing it. Though at present, the height
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image of a random surface sample within a small specific
area can be easily obtained with the scanning probe tech-
niques (such as atomic force microscopy), such difficulty
still exists because it is difficult to position exactly this
area for illumination in an optical system and then to ob-
tain its intensity distribution.

With the rapid development of both the near-field
optics theories and the engineering of near-field opti-
cal microscopy, the accurate methods, such as the rig-
orous solutions of Green’s integral equations [9–11] and
the finite-difference time-domain (FDTD) method [12,13],
have played more and more important roles in dealing with
the light wave propagations. These methods make possible
the connection of a random surface and its rigorous ran-
dom light field by numerical implementations. Using the
solutions of the Green’s integral equations, Sanchez-Gil
and Nieto-Vesperinas [9] have made the comparisons of
the light scattering profiles of random surfaces which are
the global average intensity distribution, with those ob-
tained by KA. They have shown that the results by KA
differ obviously from the accurate results. The local fluc-
tuations in the intensity distributions, i.e., the speckles are
more peculiar and are of more importance in either theo-
retical studies of light wave propagations or practical ap-
plications, and the studies on speckles have been recently
extended to near-field case, where the KA is shown to
be inappropriate. However, for the conventional far field
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Fig. 1. The schematic diagram for light scattering at medium
interface.

speckles, little work has been done on the fundamental
problem that to what degree KA is accurate.

The self-affine fractal random surface is a model
that can describe a variety of practical surfaces rang-
ing from the material growth fronts to natural random
screens [14,15]. In the growth process of thin film, the
evolution of these parameters can reflect the mechanism of
growth dynamics [14,16]. Moreover, recent studies [17,18]
show that most natural random surfaces have obvious
fractal characteristics, and can be more accurately char-
acterized by self-affine fractal model than by the conven-
tional one with Gaussian power spectrum. In this paper,
we study the accuracy of the KA in the calculations of the
speckle intensities produced by self-affine fractal random
surfaces. The rigorous speckle intensities are computed by
solving numerically the Green’s integral equations at the
random interface of medium. Comparing the rigorous re-
sults with the results obtained by KA, we find that KA
is of good accuracy for random surfaces with small fluc-
tuations, i.e., with small roughness w and large roughness
exponent α, which is related to the fractal characteristics
of the random surfaces. The speckle intensities of KA devi-
ate obviously the rigorous results when surface roughness
is increased. With detailed numerical verifications, we de-
duce that both the simplification for the light field on the
random surface and the neglect of its derivative are the
causes of inaccuracy of KA.

2 Theory

For the rigorous solutions of the speckle field, we start
from the propagation of the light wave at a random inter-
face of medium as shown in Figure 1. For simplicity, we
assume a one-dimensional self-affine fractal random sur-
face z = D(x) separating a dielectric medium in the left
half space z > D(x) from vacuum in the right half space
z < D(x). An s-polarized parallel light wave Ei(r) with
a vacuum wavelength λ perpendicular to the coordinate
plane z = 0 is incident on the surface from the dielec-
tric medium, and here r is the position vector. Then the
Helmholtz equations of light fields E(r) and E′(r) in the

left and right half-spaces are, respectively:

∇2E(r) + k2E(r) = 0, z > D(x), (r ∈ V ) (1a)

∇2E′(r) + k2
0E

′(r) = 0, z < D(x), (r ∈ V ′) (1b)

where k0 = |k0| = 2π/λ, k =
√

εk0. E(r) and E′(r) satisfy
the following boundary conditions, respectively [9]:

E(r)
∣
∣
z=D(+)(x) = E′(r)

∣
∣
z=D(−)(x) (2a)

[
∂E(r)

∂n

]

z=D(+)(x)

=
[
∂E′(r)

∂n

]

z=D(−)(x)

(2b)

where D(+) and D(−) represent approaching the interface
D(x) from the left and right half-spaces, respectively, and
∂/∂n = (n · ∇) with n = (1/γ){−d[D(x)]/dx, 1} and
γ = (1 + {d[D(x)]/dx}2 )1/2. In the left space E(r) is
the sum of the incident wave and the wave scattered from
the surface. Applying Green’s theorem to the Helmholtz
equations (1a) and (1b), and with the boundary condi-
tions (2a) and (2b), we can obtain the integral equation
set for the light fields at the medium surface [9]:
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1
4π

∫ +∞
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= E(x) (3a)

− 1
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− G0F (x′)
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= 0 (3b)

where E(x) and E(x′) denote the light field on the sur-
face, G0 = G0(r;r′) = iπH

(1)
0 (k0|r − r′|) and G =

G(r;r′) = iπH
(1)
0

{

[ε(ω)]1/2
k0|r − r′|

}

are, respectively,
the two-dimensional Green’s functions in an infinite vac-
uum and dielectric medium. Here H

(1)
0 is the zeroth-order

Hankel function of the first kind, and F (x) is related to
the derivatives of the light field on the surface with respect
to the normal by F (x) = γ[∂E(r)

∂n ]z=D(x). The light field
E′(r) in the right half-space can be given:

E′(r) = − 1
4π

∫ +∞

−∞
dx′

{

E′(x′)
[
∂G0

∂z′

−D′(x′)
∂G0

∂x′

]

−G0F (x′)

}

, (r ∈ V ′). (4)

For the given the incident light field Ei(r) and the height
distribution D(x) of the medium surface and with the light
filed E(x′) and its derivative F (x′) at the boundary solved
from integral equation set (3), the rigorous light field E′(r)
scattered from the surface can be calculated from equa-
tion (4).
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In order to see more clearly the theoretical difference
between the rigorous solution of the scattered light field
E′(r) and that of KA, we show in the following how the
results of KA for the scattered field E′(r) is obtained from
equation (4). In KA, the light field E′(x′) immediately
after the surface is simplified as the product of the incident
light field Ei(x′) and the transmitted coefficient T (x′):

E′(x′) = T (x′)Ei(x′) = T (x′)exp[−ikD(x′)]. (5)

In the calculation of F (x′), the Fresnel coefficient T (x′)
is usually considered as the constant value at the normal
incidence, i.e., T (x′) ≈ T = 2n/(n+1), and the derivative
with respect to the normal n is approximated as that to x:

F (x′) = −ikTD′(x′)exp[−ikD(x′)]. (6)

Applying equations (5, 6) to equation (4), we have the
light field E′(r) in the right half-space:

E′(r) = − T

4π

∫ +∞

−∞
dx′exp[−ikD(x′)]

{[
∂G0

∂z′

−D′(x′)
∂G0

∂x′

]

+ ikD′(x′)G0

}

. (7)

Considering the argument k0|r − r′| =

k0

√

(x − x′)2 + (z − z′)2 � 1 in the one-dimensional
Green’s function G0 in the Fresnel diffraction region and
using the asymptotic expressions of Bessel and Neumann
functions, we have:

G0 = iπH
(1)
0 (k0|r − r′|)∼iπ

√
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and

k0ρ = k0

√

(x − x′)2 + [z − D(x′)]2

≈ −k0z

[

1−D(x′)
z

+
(x − x′)2

2z2

]

. (10)

where ρ = |r−r′|, and the negative sign denotes the right
half-spaces (z < 0). Another simplification made in KA
is the “small slope approximation”, with which derivative
of the height distribution is neglected. Then substituting
the above equations into equation (7), we obtain finally
the expression in KA for the scattered light field E′(r):

E′(x) = −i
T

4

√

2k0/πρ exp(−i3π/4)exp( − ik0z)

×
∫ +∞

−∞
dx′exp[−ik0(n − 1)D(x′)] exp[ − ik0(x − x′)2/2z].

(11)

Except for the phase factor exp(−i3π/4), the above equa-
tion is same as the familiar expression for the light field
in the Fresnel diffraction region produced by the random
phase screen of T exp[−ik0(n − 1)D(x′)] with the con-
ventional Green’s function GA(r) = exp(ikr)/r. Further-
more, if we replace the transmittance function of the phase
screen by R exp{−i[k|| ·r′ +kzD(x′)}, with k|| and kz the
parallel and the perpendicular components of the wave
vector, respectively, and R the reflectivity, equation (11)
will become the scattered light field in the Fresnel diffrac-
tion for a reflectance object. With the further simplifica-
tion the light field in the Fruanhofer diffraction region can
be obtained.

3 Numerical implementation

For a random surface sample with given height distribu-
tion data, we first need to solve numerically the light field
E and its derivative F at the medium boundary with equa-
tion set (3a) and (3b). For numerical solutions to be im-
plemented, this integral equation set is discretized into the
linear equation set [9–11]:





A + I

A(0) − I

B

B(0)









E

F



 = 2




E(i)

0



 (12)

where I is the identity matrix, and the (m, n) elements
Amn, Bmn, A

(0)
mn and B

(0)
mn of the N × N index matrices

A, B, A(0) and B(0) are related to the surface height D(x)
and its first and second order derivatives, the Green’s func-
tion H

(1)
0 (k0|r − r′|) and its derivative H

(1)
1 (k0|r − r′|),

and so on. The detailed expressions of these matrix ele-
ments are given in reference [9]. Solutions of equation (12)
will give the discretized light field En and its derivative
Fn which are the elements of the vectors E and F . Thus,
the transmitted light field in the right half space can be
calculated from equation (4).

For construction of the index matrices given in equa-
tion (12), the surface height distributions and their deriva-
tives need to be first generated. In the paper, we use
the self-affine fractal random surface as the model for the
medium interface, whose morphological characteristics are
described by its height-height correlation function [8,19]:

HD(ρ) = 〈[D(x + ρ)−D(x)]2〉 = 2w2{1 − exp[−(ρ/ξ)2α]}
(13)

where 〈〉 denote the ensemble average, w is the root-mean-
square roughness, ξ is the lateral correlation length and α
is the roughness exponent relating to the fractal dimension
df by df = d−α, with d the embedded dimension. When
α = 1, the random surfaces have Gaussian correlation.
We use the speckle-autocorrelation- function-analogy al-
gorithm which we have proposed in reference [20] to gener-
ate self-affine fractal surfaces. To avoid the mathematical
non-differentiatabilty of D(x) due to the fractal charac-
teristics of the surfaces, the first order and second order
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Fig. 2. The speckle intensities ob-
tained by Green’s integral (GI) equa-
tion (solid lines) and by KA (dash
lines) with surface parameters α =
1.0, ξ = 0.5 µm and w = 0.1, 0.25,
0.5, 1.0 µm ((a)–(d)), respectively.

derivatives, respectively, are calculated with the Fourier
transform method:

dD(x)/dx =

+∞∫

−∞
i2πfxFT (fx) exp(i2πfxx)dfx (14a)

d2D(x)/d2x =

+∞∫

−∞
(i2πfx)2FT (fx) exp(i2πfxx)dfx (14b)

where FT (fx) is the Fourier transform of D(x).

In the practical numerical performance, the number N
of the sampling points is 1000. The amplitude of the in-
cident light is set unity. The refractive index n =

√
ε of

the medium is 1.532 corresponding to that of glass, and
λ = 632.8 nm. The relationship H

(1)
ν (Z) = Jν(Z)+iYν(Z)

is used, with Jν Bessel function and Yν Neumann func-
tion. When the argument Z is small (Z < 0.1) and large
(Z >17.5), the asymptotic expressions of these two func-
tions are used; when Z takes medium values (0.1 ≤ Z ≤
17.5), the values of these functions are input into the pro-
gram with the increment of Z being 0.1, and then linear
interception is used for calculation of the values of the
functions at arbitrary Z. The linear equation set (12) is
finally solved with Gaussian elimination, and thus En and
Fn for the random surface sample are obtained, with which
the scattered light field are directly calculated according
to equation (4).

In contrast to the complicated above process of the
rigorous solutions, the calculations of the scattered field
of KA are rather simple. The light field E′(r) is directly
calculated based on equation (11) with height distribution
D(x) of random surface sample generated above.

4 Results and discussions

With the light field En and Fn for a random surface sam-
ple solved from the linear equation set (12), the rigorous
intensity distribution of the speckle field at any distance
from the near-field optical region to the far field diffraction
regions can be obtained. In the recent work [21], we have
shown that speckles exist on the random surface and in
the near-field of the surface, and this phenomenon can not
be appropriately described by KA. In order to understand
the accuracy of KA for the speckles in far field diffraction
regions, we now concentrate on rigorous calculations of
speckle intensity I(r) = |E(r)|2 in these regions based on
solutions of En and Fn, and then compare the results in
detail with those of the KA. In the calculation, the lat-
eral range L of random surfaces is set 20 µm, the lateral
range of observation plane is L1 = 8 mm and its distance
from the random surface is R = 1 cm. The solid lines
and dash lines in Figures 2a–2d, respectively, show the
speckle intensity distributions obtained by rigorous solu-
tions of Green’s integral (GI) equations and by KA with
surface parameters α = 1.0, ξ = 0.5 µm and w = 0.1,
0.25, 0.5, 1.0 µm, respectively. The curves in Figures 3a–
3d give intensity distributions under the same conditions
as those in Figures 2a–2d, respectively, but with α = 0.6.
From the results in (a) and (b) of Figures 2 and 3, we can
see that when the roughness w of the random surface is
small, the speckle intensities obtained by KA are of little
difference from the rigorous results by the Green’s inte-
gral equation. This means that KA is of good accuracy
for the calculation of the speckle field of random surfaces
with small roughness values. With increase of the rough-
ness of the random surface, as in (c) of both Figures 2
and 3, where the roughness is 0.5 µm, the intensity distri-
butions of KA deviate greatly from the rigorous solutions
of Green’s integral equations. Furthermore, the curve by
KA in Figure 3c deviates from the rigorous curve much
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Fig. 3. The speckle intensities ob-
tained by Green’s integral (GI) equa-
tion (solid lines) and by KA (dash
lines) with surface parameters α =
0.6, ξ = 0.5 µm and w = 0.1, 0.25,
0.5, 1.0 µm ((a)–(d)), respectively.

more obviously than that in Figure 2c. This indicates that
for the same value of roughness, KA is less accurate for the
scattered light field from random surfaces with smaller α,
i.e., with greater local fluctuations. For larger roughness
of the surfaces (w = 1.0 µm), we see that in Figure 2d
the intensity distribution by KA is very much different
from the rigorous result though some resemblance still ex-
ists, and in Figure 3d the two intensity curves are totally
different. This means that KA is very inaccurate or even
invalid for the calculation of the speckle fields scattered
from the random surfaces with large roughness.

To understand the essence of the inaccuracy of KA, we
next consider in detail properties of light field En on the
surface, its derivative Fn, the derivative of surface height
D′(x) and the Green’s function and their influences on the
scattered light field by rigorous calculation. For each sur-
face sample, we first obtain the rigorous light field En and
the derivative Fn by solving equation (12), and then calcu-
late scattered light intensity according to equation (4) in
different cases. Figures 4a–4d give the results for surface
samples with ξ = 0.5 µm and α = 0.6. In Figure 4a, the
solid curve is the intensity distribution calculated based
on equation (4) with Fn and D′(x) neglected, and the
dash curve is directly obtained from equation (11). Since
in the calculations of them, the Green’s functions are the
same and light fields on surface are the rigorous En and
the E′(x′) of KA given in equation (5), respectively, the
difference of these two curves shows that the degree of in-
accuracy with E′(x′) in equation (5) as the surface light
field in KA is rather significant.

Figure 4b gives the intensity curves to compare the in-
fluences of the derivatives. The dash curve is the rigorous
scattered intensity calculated based on equation (4), and
the dash dot curve and solid one are also calculated ac-
cording equation (4), but with the derivative Fn of light
field and with both Fn and the derivative D′(x) of the sur-

face height neglected, respectively. We note here that the
solid curve is the same as the solid one in Figure 4a. The
little difference in the dash dot curve and solid one shows
the derivative of the surface height D′(x) in equation (4)
contribute little to the scattered field. Then comparing the
dash dot curve with the rigorous result dash curve, we may
see from the great difference in them that the derivative
Fn is of great influence on the intensity distribution. This
indicates that the simplification of equation (6) in KA for
the derivative of the light field on the surface, which orig-
inates in essence from equation (5) and simplified to be
proportional to the light field itself, is very much inaccu-
rate.

Figures 4c and 4d show the rigorous intensities and the
intensities calculated with the derivatives Fn and D′(x)
neglected for random surface samples with roughness val-
ues w = 0.25 µm and w = 0.5 µm, respectively. We see
that the larger the roughness of random surfaces is, the
greater the errors will be induced by neglecting the deriva-
tives Fn.

To verify the above conclusions for the light fields on
observation planes with farther distance from the random
surface, we also calculate the speckle intensities with dis-
tance R = 20 cm, and the same conclusions as above can
be reached.

It should be noted that equation (11) is the small slope
approximation to KA. Rigorously speaking, in KA the
Fresnel transmission coefficient at a point on the random
surface depends the local angle of incidence, which is re-
lated to the local slope D′(x′). It is well understood that
the consideration of D′(x′) will make the analytical ma-
nipulation of KA for scattering problem very complicated.
The majority of the literature neglects D′(x′) for simplic-
ity and uses equation (11) for the calculation of scattered
light field [1]. Then making clear the difference of its re-
sults from those of the rigorous solution of the Green’s
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Fig. 4. (a) Gives the intensities calcu-
lated based on equation (4) with ne-
glect of Fn and D′(x) (solid curve)
and directly obtained by KA (dash
curve), respectively. (b) The compar-
isons of the rigorous intensity (dash
curve) with those calculated with Fn

neglected (dash dot curve) and both
Fn and D′(x) neglected (solid curve),
respectively. (c) and (d) The compar-
isons of the rigorous intensities with
those given by neglecting both F (x)
and D′(x) with roughness w = 0.25,
0.5 µm, respectively.

integral equation is necessary, and this is what this paper
is actually aimed to. In addition, D′(x′) diverges mathe-
matically due to the fractality of surfaces. However, from
the viewpoint of physics, the fractality of random surfaces
is limited to a reasonable spatial range rather than extend-
ing to that from the infinitively small to the infinitively
large, and hence D′(x′) may be physically regarded as fi-
nite. Indeed, D′(x′) may become very large due to the
fractality, but the results in Figure 4b indicate that the
solid intensity curve with neglect of both Fn and D′(x′) is
still close to the dash dot curve with mere neglect of Fn,
though some minor errors do exist. This may justify the
necessity of studying the accuracy the KA with the slope
of the surface neglected.

5 Conclusion

Starting from the Green’s integral and Kirchhoff’s approx-
imation, we calculate the rigorous and the approximate
speckle intensities produced by the self-affine random sur-
face, respectively. We study the accuracy of KA for cal-
culation of light field by comparing the rigorous results
with those obtained by KA. It is found that the accuracy
of KA depends on the surface parameters roughness value
w and the roughness exponent α, i.e., KA has high accu-
racy for the surfaces with small w and large α and vice
versa. From the detailed comparisons of the intensities in
different cases, we draw a conclusion that both the simpli-
fication for the light field on the random surface and the
neglect of its derivative cause the inaccuracy of KA.
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